Searching and Updating Metric Space
Databases using the Parallel EGNAT

Mauricio Marin'?:3, Roberto Uribe?, and Ricardo Barrientos?

! Yahoo! Research, Santiago, Chile
2 DCC, University of Magallanes, Chile
3 B-mail: mmarin@yahoo-inc.com

Abstract. The Evolutionary Geometric Near-neighbor Access Tree (EG-
NAT) is a recently proposed data structure that is suitable for indexing
large collections of complex objects. It allows searching for similar objects
represented in metric spaces. The sequential EGNAT has been shown to
achieve good performance in high-dimensional metric spaces with proper-
ties (not found in others of the same kind) of allowing update operations
and efficient use of secondary memory. Thus, for example, it is suit-
able for indexing large multimedia databases. However, comparing two
objects during a search can be a very expensive operation in terms of
running time. This paper shows that parallel computing upon clusters of
PCs can be a practical solution for reducing running time costs. We des-
cribe alternative distributions for the EGNAT index and their respective

parallel search/update algorithms and concurrency control mechanism 4,

1 Introduction

Searching for all objects which are similar to a given query object is a problem
that has been widely studied in recent years. For example, a typical query for
these applications is the range query which consists on retrieving all objects
within a certain distance from a given query object. That is, finding all similar
objects to a given object. The solutions are based on the use of a data structure
that acts as an index to speed up queries. Applications can be found in voice
and image recognition, and data mining problems.

Similarity can be modeled as a metric space as stated by the following defi-
nitions.

Metric space. A metric space is a set X in which a distance function is defined
d:X? — R, such that V,y,2 € X,

1. d(z,y) > andd(z,y) =0iff x = y.
2. d(x,y) = d(y, z).
3. d(z,y) + d(y,z) > (d(x, z) (triangular inequality).

4 This work has been partially funded by FONDECYT project 1060776.



Range query. Given a metric space (X,d), a finite set Y C X, a query = € X,
and a range r € R. The results for query = with range r is the set y € Y,
such that d(z,y) <r.

The k nearest neighbors: Given a metric space (X,d), a finite set Y C X, a
query x € X and k > 0. The k nearest neighbors of z is the set A in Y where
|A| = k and there is no object y € A such as d(y,z)

The distance between two database objects in a high-dimensional space can
be very expensive to compute and in many cases it is certainly the relevant per-
formance metric to optimize; even over the cost secondary memory operations.
For large and complex databases it then becomes crucial to reduce the number
of distance calculations in order to achieve reasonable running times. This makes
a case for the use of parallelism.

Search engines intended to be able to cope with the arrival of multiple query
objects per unit time are compelled to using parallel computing techniques in
order to reduce query processing running times. In addition, systems containing
complex database objects may usually demand the use of metric spaces with high
dimension and very large collections of objects may certainly require careful use
of secondary memory.

The distance function encapsulates the particular features of the application
objects which makes the different data structures for searching general purpose
strategies. Well-known data structures for metric spaces are BKTree [3], Met-
ricTree [8], GNAT [2], VpTree [10], FQTree [1], MTree [4], SAT [5], Slim-Tree
[6]. Some of them are based on clustering and others on pivots. The EGNAT is
based on clustering [7].

Most data structures and algorithms for searching in metric-space databases
were not devised to be dynamic ones. However, some of them allow insertion op-
erations in an efficient manner once the whole tree has been constructed from an
initial set of objects. Deletion operations, however, are particularly complicated
because in this strategies the invariant that supports the data structure can be
easily broken with a sufficient number of deletions, which makes it necessary to
re-construct from scratch the whole tree from the remaining objects.

When we consider the use of secondary memory we find in the literature just
a few strategies which are able to cope efficiently with this requirement. A well-
know strategy is the M-Tree [4] which has similar performance to the GNAT in
terms of number of accesses to disk and overall size of the data structure. In [7] we
show that the EGANT has better performance than the M-Tree and GNAT. The
EGNAT is able to deliver efficient performance under high dimensional metric
spaces and the use of secondary memory with a crucial advantage, namely it is
able to handle update operations dynamically.

In this paper we propose the parallelization of the EGANT in the context of
search engines for multimedia databases in which streams of read-only queries are
constantly arriving from users together with update operations for objects in the
database. We evaluate alternatives for distributing the EGANT data structure
on a set of processors with local memory and propose algorithms for performing
searches and updates with proper control of read-write conflicts.



2 The EGNAT Data Structure and Algorithms

The EGNAT is based on the concepts of Voronoi Diagrams and is an extension
of the GNAT proposed in [2], which in turn is a generalization of the Gener-
alized Hyperplane Tree (GHT) [8]. Basically the tree is constructed by taking
k points selected randomly to divide the space {p1, po, ..., Dk}, where every re-
maining point is assigned to the closet one among the k points. This is repeated
recursively in each sub-tree D,,.

The EGNAT is a tree that contains two types of nodes, namely a node bucket
and another gnat. All nodes are initially created as buckets maintaining only the
distance to their fathers. This allows a significant reduction in space used in disk
and allows good performance in terms a significant reduction of the number of
distance evaluations. When a bucket becomes full it evolves from a bucket node
to a gnat one by re-inserting all its objects into the newly created gnat node.

In the search algorithm described in the following we assume that one is
interested in finding all objects at a distance d < r to the query object g. During
search it is necessary to determine whether it is a bucket node or a gnat node. If it
is a bucket node, we can use the triangular inequality over the center associated
with the bucket to avoid direct (and expensive) computation of the distances
among the query object and the objects stored in the bucket. This is effected as
follows,

— Let ¢ be the query object, let p be the center associated with the bucket
(i.e., p is a center that has a child that is a bucket node), let s; be every
object stored in the bucket, and let r be the range value for the search, then
if holds

Dist(s;,p) > Dist(q,p) +r

or
Dist(s;,p) < Dist(q,p) —r,

it is certain that the object s; is not located within the range of the search.
In other case it is necessary to compute the distance between ¢ and s;.

We have observed on different types of databases that this significantly reduces
the total amount of distance calculations performed during searches.

For the case in which the node is of type gnat, the search is performed
recursively with the standard GNAT method as follows,

1. Assume that we are interested in retrieving all objects with distance d < r to
the query object ¢ (range query). Let P be the set of centers of the current
node in the search tree.

2. Choose randomly a point p in P, calculate the distance d(q, p). If d(q,p) <,
add p to the output set result.

3. Va € P, if [d(q,p) — r,d(q,p) +r] N range(p, D,) is empty, the remove x
from P.

4. Repeat steps 2 and 3 until processing all points (objects) in P.

5. For all points p; € P, repeat recursively the search in D, .



3 Efficient Parallelization of the EGNAT

We basically propose two things in this section. Firstly, we look for a proper
distribution of the tree nodes and based on that we describe how to perform
searches in a situation in which many users submit queries to a parallel server
by means of putting queries into a receiving broker machine. This broker routes
the queries to the parallel server and receive from it the answers to pass on
back the results to the users. This is the typical scheme for search engines. In
addition, due to the EGNAT structure we employ to build a dynamic index in
each processor, the parallel server is able to cope with update operations taking
place concurrently with the search operations submitted by the users.

Secondly, we propose a very fast concurrency control algorithm which allows
search and update operations to take place without producing the potential
read/write conflicts arising in high traffic workloads for the server. We claim
very fast based on the fact that the proposed concurrency control mechanism
does not incur in the overheads introduced by the classical locks or rollback
strategies employed by the typical asynchronous message passing model of par-
allel computation supported by the MPI or PVM libraries.

Our proposal is very simple indeed. The broker assigns a unique timestamp to
each query and every processor maintains its arriving messages queue organized
as a priority queue wherein higher priority means lower timestamp. Every pro-
cessor performs the computations related to each query in strict priority order.
The scheme works because during this process it is guaranteed that no messages
are in transit and the processors are periodically barrier synchronized to send
departing messages and receive new ones. In practical terms, the only overhead
is the maintenance of the priority queue, a cost which should not be significant
as we can profit from many really efficient designs proposed for this abstract
data type so far.

The above described type of computation is the one supported by the bulk-
synchronous model of parallel computing [9]. People could argue that the need
to globally synchronize the processors could be detrimental and that there could
be better ways of exploiting parallelism by means of tricks from asynchronous
message passing methods. Not the case for the type of application we are dealing
with in this paper. Our results show that even on very inefficient communication
platforms such a group of PCs connected by a 100MB router switch, we are able
to achieve good performance. This because what is really relevant to optimize
is the load balance of distance calculations and balance of accesses to secondary
memory in every processor. In all cases we have observed that the cost of barrier
synchronizing the processors is below 1%.

Moreover, the particular way of performing parallel computing and commu-
nications allows processors further reduction of overheads by packing together
into a large message all messages sent to a given processor. Another significant
improvement in efficiency, which leads to super-linear speedups, is the relative
increase of the size of disk-cache in every processor as a result of keeping a frac-
tion N/P of the database in the respective secondary memory, where N is the
total number of objects stored in the database and P the number of processors.



To show the suitability of the EGNAT data structure for supporting query
processing in parallel, we evenly distributed the database among the P proces-
sors of a 10-processors cluster of PCs. Queries are processed in batches as we
assume an environment in which a high traffic of queries is arriving to the broker
machine. The broker routes the queries to the processors in a circular manner.
We take batches as we use the BSP model of computing for performing the
parallel computation and communication.

In the bulk-synchronous parallel (BSP) model of computing [9], any parallel
computer (e.g., PC cluster, shared or distributed memory multiprocessors) is
seen as composed of a set of P processor-local-memory components which com-
municate with each other through messages. The computation is organized as
a sequence of supersteps. During a superstep, the processors may only perform
sequential computations on local data and/or send messages to other proces-
sors. The messages are available for processing at their destinations by the next
superstep, and each superstep is ended with the barrier synchronization of the
Processors.

The running time results shown below were obtained with three different
metric space databases. (a) A 10-dimensional vector space with 100,000 points
generated using a Gaussian distribution with average 1 and variance 0.1. The
distance function among objects is the Euclidean distance. (b) Spanish dictio-
nary with 86,061 words where the distance between two words is calculated by
counting the minimum number of insertions, deletions and replacements of char-
acters in order to make the two words identical. (¢) Image collection represented
by 100,000 vectors of dimension 15.

Searches were performed by selecting uniformly at random 10% of the database
objects. For all cases the search of these objects is followed by the insertion of
the same objects in a random way. After we searched 10 objects we randomly
chose one of them and insert it into the database, and for every 10 objects in-
serted we delete one of them also selecting it at random. Notice that we repeated
the same experiments shown below but without inserting/deleting objects and
we observed no significant variation in the total running time. This means that
the overheads introduced by the priority queue based approach for concurrency
control we propose in this paper has no relevant effects in the total running time.

We used two approaches to the parallel processing of batches of queries. In the
first case, we assume that a single EGNAT has been constructed considering the
whole database. The first levels of the tree are kept duplicated in every processor.
The size of this tree is large enough to fit in main memory. Downwards the tree
branches or sub-trees are evenly distributed onto the secondary memory of the
processors. A query starts at any processor and the sequential algorithm is used
for the first levels of the tree. After this copies of the query “travel” to other
processors to continue the search in the sub-trees stored in the remote secondary
memories. That is queries can be divided in multiple copies to follow the tree
paths that may contain valid results. These copies are processed in parallel when
are sent to different processors. We call this strategy the global index approach.



12

BD - gél&sveciors JEL— 14 L ' ' ' BD - Gauss vectors —— ]
BD - images - BD -images -
10 BD - Spanish dictionary ---=--- 1 i) BD - Spanish dictionary ---=---
T 3 12¢ 1
] 1
8 10
W £
a
2 3 8
& |53
g 5
5] g
£
0 . 0 .
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Processors Number of Processors
(a) Distance calculations (b) Running time
1 new query per superstep 1 new query per superstep
12 T T T T 18 T u T T
BD - Gauss vectors —— BD - Gauss vectors ——
BD - images 16 BD - images —* R
10 | BD - spanish dictionary ---=--- N T BD - Spanish dictionary ---=---
% E. 14 - 1
g st 2 12}
w £
Q E 10
= =
5] 55
§ B
] g
£
0

Number of Processors

Number of Processors

(c) Distance calculations
10 new queries per superstep

(d) Running time
10 new queries per superstep

Fig. 1. Results for the global index approach. Figures (a) and (c) show the ratio number
of sequential distance evaluations to parallel ones, and figures (b) and (d) show the
respective effect in the running times.

Figure 1 shows running time and distance calculation measures for the global
index approach against an optimized sequential implementation. The results
show reasonable performance for small number of processors but not for large
number of processors. This is because performance is mainly affected by the load
imbalance observed in the distance calculation process. This cost is significantly
more predominant over communication and synchronizations costs. The results
for the ratio of distance calculations for the sequential algorithm to the parallel
one show that there is a large imbalace in this process. In the following we
describe the second case for parallelization which has better load balance. Notice
that this case requires more communication because of the need for broadcasting
each query to all processors.

In the second case, an independent EGNAT is constructed in the piece of
database stored in each processor. Queries in this case start at any processor at
the beginning of each superstep. The first step in processing any query is to send



a copy of it to all processors including itself. At the next superstep the searching
algorithms is performed in the respective EGNAT and all solutions found are
reported to the processor that originated the query. New objects are distributed
circularly onto the processors and insertions are performed locally. We call this
strategy the local index approach.

In the figures 2 we present results for running time and distance calculations
for @=1 and 10 new queries per superstep respectively. The results show that
the local index approach has much better load balance and thereby it is able
to achieve better speedups. In same cases, this speedup is superlinear because
of the secondary memory effect. Notice that even processing batches of one
query per processor is good enough to amortize the cost of communication and
synchronization. Interestingly, the running times obtained in figure 2 are very
similar to the case in which no write operations are performed in the index [7].
This means that the overhead introduced by the concurrency control method is
indeed negligible.

4 Conclusions

We have described the efficient parallelization of the EGNAT data structure. As
it allows insertions and deletions, we proposed a very efficient way of dealing
with concurrent read/write operations upon an EGNAT evenly distributed on
the processors. The local index approach is more suitable for this case as the
dominant factor in performance is the proper balance of distance calculations
taken place in parallel.

The results using different databases show that the EGNAT allows an efficient
parallelization in practice. The results for running time show that it is feasible to
significantly reduce the running time by the inclusion of more processors. This
is because a number of distance calculations for a given query can take place
in parallel during query processing. We emphasize that for the use of parallel
computing to be justified we must put ourselves in a situation of a very high
traffic of user queries. The results show that in practice just with a few queries
per unit time it is possible to achieve good performance. That is, the combined
effect of good load balance in both distance evaluations and accesses to secondary
memory across the processors, is sufficient to achieve efficient performance.

References

1. R. Baeza-Yates and W. Cunto and U. Manber and S. Wu. Proximity matching
using fixedqueries trees. 5th Combinatorial Pattern Matching (CPM’94), 1994.

2. S. Brin. Near neighbor search in large metric spaces. The 21st VLDB Conference,
1995.

3. W. Burkhard and R. Keller. Some approaches to best-match file searching. Com-
munication of ACM, 1973.

4. P. Ciaccia and M. Patella and P. Zezula. M-tree: An efficient access method for
similarity search in metric spaces. The 23st International Conference on VLDB,
1997.



D.E. Sequentia/D.E. Parallel

D.E. Sequential/D.E. Parallel

12 T T T T T T T 18

Gauss vectors —+—
16 - Gauss vectors —+—
10 + Images --x z Images -~
Spanish dictionary ---m--- g 14 + Spanish dictionary ---m---
g 12 1
F L
=
&
B
()
£
£
0 .
2 3 4 5 6 7 8 9 10
Number of processors Number of processors
(a) Distance calculations (b) Running time
1 new query per superstep 1 new query per superstep
12 T T T T T T T 18
Gauss :/ectors 16 Gauss vectors —+—
10 + 'd]d'ct‘magg ’: o Images -
Spanish dictionary % 14 r Spanish dictionary ---m---
8 3 g 12 1
=
z
5
§
9]
£
£
0

Number of processors Number of processors
(c) Distance calculations (d) Running time

10 new queries per superstep 10 new queries per superstep

Fig. 2. Results for the local index approach. Figures (a) and (c) show the ratio number
of sequential distance evaluations to parallel ones, and figures (b) and (d) show the
respective effect in the running times.

5. G. Navarro and N. Reyes. Fully dynamic spatial approximation trees. In the 9th

International Symposium on String Processing and Information Retrieval (SPIRE
2002), pages 254-270, Springer 2002.

C. Traina and A. Traina and B. Seeger and C. Faloutsos. Slim-trees: High perfor-
mance metric trees minimizing overlap between nodes. VII International Confer-
ence on Extending Database Technology, 2000.

R. Uribe, G. Navarro, R. Barrientos, M. Marin, An index data structure for search-
ing in metric space databases. International Conference on Computational Science
(ICCS 2006), LNCS 3991 (part I) pp. 611-617, (Springer-Verlag), Reading, UK,
May 2006.

J. Uhlmann. Satisfying general proximity/similarity queries with Metric Trees.
Information Processing Letters, 1991.

L.G. Valiant. A bridging model for parallel computation. Comm. ACM, 1990.

. P. Yianilos. Data structures and algoritms for nearest neighbor search in general

metric spaces. 4th ACM-SIAM Symposium on Discrete Algorithms, 1993.



