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Abstract. We present an index data structure for metric-space databases.
The proposed method has the advantage of allowing an efficient use of
secondary memory. In the case of index entirely loaded in main memory
our strategy achieves competitive performance. Our experimental study
shows that the proposed index outperforms other strategies known to be
efficient in practice. A valuable feature of the proposal is that the index
can be dynamically updated once constructed.

1 Introduction

Searching in metric spaces is a very active research field since it offers efficient
methods for indexing and searching by similarity in non-structured domains. For
example, multimedia databases manage objects without any kind of structure
like images, audio clips or fingerprints. Retrieving the most similar fingerprint
to a given one is a typical example of similarity search. The problem of text
retrieval is present in systems that range from a simple text editor to big search
engines. In this context we can be interested in retrieving words similar to a
given one to correct edition errors, or documents similar to a given query. We
can find more examples in areas such as computational biology (retrieval of DNA
or protein sequences) or pattern recognition (where a pattern can be classified
from other previously classified patterns).

Similarity search can be trivially implemented comparing the query with all
the objects of the collection. However, the high computational cost of the dis-
tance function, and the high number of times it has to be evaluated, makes
similarity search very inefficient with this approach. This has motivated the
development of indexing and search methods in metric spaces that make this
operation more efficient trying to reduce the number of evaluations of the dis-
tance function. This can be achieved storing in the index information that, given
a query, can be used to discard a significant amount of objects from the data
collection without comparing them with the query.

Although reducing the number of evaluations of the distance function is the
main goal of indexing algorithms, there are other important features. Some me-
thods can only work with discrete distance functions while others admit continu-
ous distances too. Some methods are static, since the data collection cannot grow
once the index has been built. Dynamic methods support insertions in an ini-
tially empty collection. Another important factor is the possibility of efficiently
storing these structures in secondary memory.



Search methods in metric spaces can be grouped in two classes [5]: pivot-
based and clustering-based search methods. A pivot-based strategy selects some
objects as pivots from the collection and then computes the distance between
the pivots and the objects of the database and use this information to group
related objects. This method selects a subset of objects from the collection as
pivots, and the index is built computing and storing the distances from each
of them to the objects of the database. During the search, this information is
used to discard objects from the result without comparing them with the query.
Clustering techniques partition the collection of data into groups called clusters

such that similar entries fall into the same group. Thus, the space is divided into
zones as compact as possible, usually in a recursive fashion, and this technique
stores a representative point (“center”) for each zone plus a few extra data that
permit quickly discarding the zone at query time. In the search, complete regions
are discarded from the result based on the distance from their center to the query.

In this paper we propose a combination of two existing methods (section 2).
The first method is used as it is proposed by their authors whereas the second
one has been highly optimized by us to deal with secondary memory efficiently
and very importantly to reduce the running time by increasing the ability of
the strategy to quickly discard objects that cannot be part of the solution to a
given query (section 3). We present a complete evaluation of the performance
of the proposed strategy in section 4 which shows that our strategy consistently
outperforms all others in practice. Section 5 presents concluding remarks.

2 Metric Spaces and Indexing Strategies

A metric space (X, d) is composed of an universe of valid objects X and a distance

function d : X×X → R
+ defined among them. The distance function determines

the similarity between two given objects. The goal is, given a set of objects
and a query, to retrieve all objects close enough to the query. This function
holds several properties: strictly positiveness (d(x, y) > 0 and if d(x, y) = 0
then x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality (d(x, z) ≤
d(x, y)+d(y, z)). The finite subset U ⊂ X with size n = |U|, is called the database
and represents the collection of objects.

A k-dimensional vector space is a particular case of metric space in which
every object is represented by a vector of k real coordinates. The definition of the
distance function depends on the type of the objects we are managing. In a vector
space, d could be a distance function of the family Ls(x, y) =

∑
i<=i<=k(|xi −

yi|
s)1/s. For example s = 2 yields Euclidean distance, that is the number of

insertions, deletions or modifications to make two words equal.
There are three main queries of interest for a collection of objects in a metric

space:

– range search: that retrieves all the objects u ∈ U within a radius r of the
query q, that is: (q, r)d = {u ∈ U/d(q, u) ≤ r};

– nearest neighbor search: that retrieves the most similar object to the query
q, that is NN(q) = {u ∈ U/∀v ∈ U, d(q, u) ≤ d(q, v)};



– k-nearest neighbors search: a generalization of the nearest neighbor search,
retrieving the set kNN(q) ⊆ U such that |kNN(q)| = k and ∀u ∈ kNN(q), v ∈
U − kNN(q), d(q, u) ≤ d(q, v).

We focus on range queries since nearest neighbor queries can be rewritten as
range queries in an optimal way [5]. In the following we describe the data struc-
tures we combine to produce our metric-space index. In particular we combine a
strategy based on clustering and one in pivots which have been reported in the
literature as efficient solutions to process metric-space queries.

2.1 List of Clusters (LC)

This strategy [4] builds the index by choosing a set of centers c ∈ U with radius
rc where each center maintains a bucket that keep all objects that are within
the extension of the ball (c, rc). Each bucket contains the k objects that are
the closet ones to the respective center c. Thus the radius rc is the maximum
distance between the center c and the k-nearest neighbor.

The buckets are filled as the centers are created and thereby a given element
a located in the intersection of two or more center balls is assigned to the first
center. The first center is randomly chosen from the set of objects. The next are
selected so that they maximize the sum of the distances to all previous centers.

A range query q with radius r is solved by scanning in order of creation the
centers. At each center we compute d(q, c) and in the case that d(q, c) ≤ rc all
objects in the bucket associated with c are compared against the query. Also if
the query ball (q, r) is totally contained in the center ball (c, rc), there is no need
to consider others centers.

2.2 Sparse Spatial Selection (SSS)

During construction, this pivot-based strategy selects some objects as pivots
from the collection and then computes the distance between the pivots and the
objects of the database [2]. The result is a table of distances where columns are
the pivots and rows the objects. Each cell in the table contains the distance
between the object and the respective pivot. These distances are used to solve
queries as follows. For a range query (q, r) the distances between the query and
all pivots are computed. The objects x from the collection that do not hold the
condition |d(pi, x) − d(pi, q)| ≤ r for all pivots pi can be immediately discarded
due to the triangle inequality. The objects that pass this test are considered as
potential members of the final set of objects that form part of the solution for the
query and therefore they are directly compared against the query by applying
the condition d(x, q) ≤ r. The gain in performance comes from the fact that it
is much cheaper to effect the calculations for discarding objects using the table
than computing the distance between the candidate objects and the query.

A key issue for efficiency is the method employed to calculate the pivots,
which must be effective enough to drastically reduce total number of distance
computations between the objects and the query. To select the pivots set, let



(X, d) be a metric space, U ⊂ X an object collection, and M the maximum
distance between any pair of objects, M = max{d(x, y)/x, y ∈ X}. The set of
pivots contains initially only the first object of the collection. Then, for each
element xi ∈ U, xi is chosen as a new pivot if its distance to every pivot in the
current set of pivots is equal or greater than α M , being α a constant parameter.
Therefore, an object in the collection becomes a new pivot if it is located at more
than a fraction of the maximum distance with respect to all the current pivots.

2.3 LC-SSS combination (Hybrid)

We propose a combination between the List of Clusters (LC) and Sparse Spatial
Selection (SSS) indexing strategies. In this case we both compute the LC centers
and SSS pivots independently. We form the clusters of LC and within each cluster
we build a SSS table using the global pivots and organization of columns and
rows described above. We emphasize on global SSS pivots because intuition tells
that in each cluster of LC one should calculate pivots with the objects located
in the respective cluster. However, we have found that the quality of SSS pivots
degrades significantly when they are restricted to a subset of the database, and
also the total number of them tends to be unnecessarily large. We call this
strategy hybrid.

3 Optimization for running time and secondary memory

Our contribution to increasing the performance of the SSS index is as follows.
During construction of the table of distances we compute the cumulative sum
of the distances among all objects and the respective pivots. We then sort the
pivots by these values in increasing order and define the final order of pivots
as follows. Assume that the sorted sequence of pivots is p1, p2, ...., pn. Our
first pivot is p1, the second is pn, the third p2, the fourth pn−1 and so on. We
also keep the rows in the table sorted by the values of the first pivot so that
upon reception of a range query q with radius r we can quickly (binary search)
determine between what rows are located the objects that can be selected as
candidates to be part of the answer. This because objects oi being part of the
answer can only be located between the rows that satisfies d(p1, oi) ≥ d(q, p1)−r
and d(p1, oi) ≤ d(q, p1) + r.

In practice, during query processing and after the two binary searches on
the first column of the table, we can take advantage of the column x rows or-
ganization of the table of distances by first performing a few, say v, vertical
wise applications of the triangular inequality on the objects located in the rows
delimited by the results of the binary searches, followed by horizontal wise ap-
plications of the triangular inequality to discard as soon as possible all objects
that are not potential candidates to be part of the query answer. See figure 1
which shows the case of two queries being processed concurrently.

For secondary memory the combination of these strategies have the advantage
of increasing the locality of accesses to disk and the processor can keep in main
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Fig. 1. Optimization to the SSS distance table.

memory the first v columns of the table. In the experiments performed in this
paper we observed that with v = n/4 we achieved competitive running times.

In the following we describe two feasible physical organizations of the index
on disk pages. The description is illustrated in figure 2 which presents two cases
for the distribution of a distance table with 23 objects and 4 pivots. The table is
partitioned in 5 blocks. The first 4 columns contains the distances from objects to
the 4 pivots and the last column contains the respective object ID associated with
each row. The cell located at the bottom-right indicates the physical address of
the disk page containing the next table block. Each block is stored in contiguous
disk pages. We assume that the main memory is large enough to store two
blocks. Figure 2.a represents a case in which all objects 1 ... 23 are available
at construction time and figure 2.b a case in which objects are arriving one by
one to the index and every time a block is filled up a new one is started. The
first case requires a external memory sorting by the first pivot. In the latter case
the first column is kept sorted every two blocks since we are assuming that they
both fit into main memory. Thus external sorting is not required. In the next
section we show that both strategies achieve a very similar performance which
indicates that the scheme supports efficiently further updates once the index has
been constructed from an initial set of objects.

In figure 2.a and 2.b, the grey cells represent the cases in which the triangular
inequality gives a positive match for a range query q with d(q, pi) = {6, 8, 3, 7}
for pivots pi and radius r = 3. We assume that the query is solved by performing
one vertical operation followed a horizontal operation for each row selected for
the first pivot. In fact, as the first pivot is sorted by distance it is only necessary
to perform two binary searches to detect the first row with value d(q, p1)−r = 3
and the last row with value d(q, p1) + r = 9. Then the sequence of horizontal
applications of the triangular inequality determines that the objects 22, 17 and 11
are candidates which must be directly compared against the query object. Notice
that a second vertical operation would have reduced significantly the number of
horizontal operations (which is a tradeoff that depends on the application).
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Fig. 2. Storing the distance table in blocks composed of a fixed number of disk pages.

4 Experiments

The performance of Hybrid Index was tested with several collections of data.
First, we used a collection of 100, 000 vectors of dimension 10, synthetically
generated with Gaussian distribution. The Euclidean distance was used as the
distance function when working with this collection. We also worked with a
collection of 86, 061 words taken from the Spanish dictionary, and using the edit
distance as the distance function. The algorithm was compared with other well-
known clustering-based indexing methods: M-Tree [6], GNAT [1], EGNAT [8],
Spatial Approximation Trees (SAT) [7]. We also included in the comparison the
LC [4] and SSS [2] strategies, and a recent version of the SSS called the SSSTree
[3] which uses a tree structure in which the SSS pivots are used to recursively
divide the space.



4.1 Cost of secondary memory access

In the left part of table 1 we show for the Spanish dictionary data set the total
number of blocks and objects per block for cases in which we limit the total
number of pivots to 4, 8, 12, 16 and 20. The first three columns show the disk
activity when constructing the index with the 90% of the data set by using the
strategy despicted in figure 2.a. The last column shows the case when the same
data is indexed on-line by using the strategy of figure 2.b. In this case no reads
of blocks are effected and blocks are written to disk as soon as they become
full during the insertion of objects. In the first case reads and seeks have to be
performed in order to perform the sorting by the first column and move whole
rows among blocks. However, the actual difference in running time between the
two alternatives is negligible, presumebly because of disk-cache effects.

Pivots Blocks Objects

4 378 204

8 686 113

12 994 78

16 1291 60

20 1614 48

Writes Seeks Reads Writes

399 761 780 380

721 1373 1408 688

1030 1989 2025 996

1342 2583 2634 1293

1676 3229 3291 1616

Table 1. Disk activity for index construction.

The next 10% of the data set is used to perform range queries with radio 1, 2,
3 and 4. The figures 3.a and 3.b show the total number of block reads performed
during the processing of queries for the two methods of index construction. The
differences in disk ativity are irrelavant showing that both approaches achieve
similar performance. However, for large radious 4 the on-line creation of the
index tends to generate more activity because large radio tend to generate a
large number of candidate objects which are expected to be evenly distributed
onto all blocks.

4.2 Calls to the distance evaluation function

Computing the distance between two complex objects is known to be very ex-
pensive in terms of running time in metric-space databases. This produces an
implementation independent base upon which comparing different strategies. In
the following we review previous studies on comparison of a number of metric-
space index and then we compare the best performers with our proposal.

Figures 4 and 5 show results for different data structures proposed so far. The
Hybrid strategy achieves the best performance in terms of this metric though
very similar to the LC strategy.
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Fig. 3. Disk seeks and their respective block read for during range queries.
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4.3 Comparing running times

In figure 6 we present results for running times with the different strategies.
The proposed Hybrid achieves the best performance for most cases. Notice that
structures such as the SAT achieves better performance than ours for range
queries with large radio. The results suggests that SAT performs significantly
better for large r. However, for these radio almost all objects are part of the
solution to the query and we do not see a practical use of queries like this ones
in actual applications.

Finally figure 7 shows results for the cummulative running time involved
in accessing the distance table and executing the distance evaluation function
for different values of the parameter α, namely different number of pivots. The
results show a tradeoff between both costs with optimum in α = 0.7.

5 Conclusions

We hace presented a simple but very efficient strategy to solve queries in metric-
space databases. Our strategy achieves best performance than most other strate-
gies. However, it is not able to outperform in a significant manner to a tree based
structure called SSSTree which is in fact based on a strategy quite similar to ours.
However, our strategy has clear advantages with respect to secondary manage-
ment, total memory used by the index. Also the organization of the index in
terms of a table with columns and rows allows it to exploit in an optimal way
the parallelism available in the new computer architectures based on multi-cores
devised to support multi-threading by hardware. We are currently evaluating the
gain in performance in this architectures by solving queries using the standard
openMP.

Acknowledgments: This work has been partially funded by FONDECYT
project 1060776, UMAG PR-F1-002IC-06, and UNSL 2003-0075-00000.

References

1. Sergey Brin. Near neighbor search in large metric spaces. In 21st conference on
Very Large Databases, 1995.

2. Nieves R. Brisaboa and Oscar Pedreira. Spatial selection of sparse pivots for similar-
ity search in metric spaces. In SOFSEM 2007: 33rd Conference on Current Trends
in Theory and Practice of Computer Science, LNCS (4362), pages 434–445, 2007.

3. Nieves R. Brisaboa, Oscar Pedreira, Diego Seco, Roberto Solar, and Roberto Uribe.
Clustering-based similarity search in metric spaces with sparse spatial centers. In In
34th International Conference on Current Trends in Theory and Practice of Com-
puter Science, SOFSEM, pages 186–197, Slovakia, January 19-25, 2008.
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