
An Index Data Structure for Searching in

Metric Space Databases

Roberto Uribe1, Gonzalo Navarro2, Ricardo J. Barrientos1, and
Mauricio Maŕın1

1 Universidad de Magallanes, Chile
2 Universidad de Chile

Abstract. This paper presents the Evolutionary Geometric Near-neigh-
bor Access Tree (EGNAT) which is a new data structure devised for
searching in metric space databases. The EGNAT is fully dynamic, i.e.,
it allows combinations of insert and delete operations, and has been op-
timized for secondary memory. Empirical results on different databases
show that this tree achieves good performance for high-dimensional met-
ric spaces. We also show that this data structure allows efficient paral-
lelization on distributed memory parallel architectures. All this indicates
that the EGNAT is suitable for conducting similarity searches on very
large metric space databases.

1 Introduction

Searching for similar objects into a large collection of objects stored in a metric-
space database has become an important problem. For example, a typical query
for these applications is the range query which consists on retrieving all objects
within a certain distance from a given query object. From this operation one can
construct other ones such as the nearest neighbors. Applications can be found
in voice and image recognition, and data mining problems.

Similarity can be modeled as a metric space as stated by the following defi-
nitions.

Metric Space. A metric space is a set X in which a distance function is defined
d : X2 → R, such that ∀x, y, z ∈ X ,

1. d(x, y) ≥ 0 and d(x, y) = 0 iff x = y.
2. d(x, y) = d(y, x).
3. d(x, y) + d(y, z) ≥ (d(x, z) (triangular inequality).

Range query. Given a metric space (X,d), a finite set Y ⊆ X , a query x ∈ X ,
and a range r ∈ R. The results for query x with range r is the set y ∈ Y ,
such that d(x, y) ≤ r.

The distance between two database objects in a high-dimensional space can
be very expensive to compute and in many cases it is certainly the relevant per-
formance metric to optimize; even over the cost secondary memory operations.

2 Roberto Uribe, Gonzalo Navarro, Ricardo J. Barrientos, and Mauricio Maŕın

For large and complex databases it then becomes crucial to reduce the num-
ber of distance calculations in order to achieve reasonable running times. This
makes a case for the use of parallelism.

The distance function encapsulates the particular features of the application
objects which makes the different data structures for searching general purpose
strategies [CNBYM01]. Well-known data structures for metric spaces are BK-
Tree [BK73], MetricTree [Uhl91], GNAT [Bri95], VpTree [Yia93], FQTree [BY-
CMW94], MTree [CPZ97], SAT [Nav02], Slim-Tree [TTSF00]. Some of them are
based on clustering and others on pivots. The EGNAT proposed in this paper
is based on clustering [Uri05].

In the case of pivots based strategies a set of (usually random) objects are
selected from the database and distances are calculated to organize the pivots in
a, for example, tree fashion. A search query is executed by calculating distances
between the query object and the pivots so that the search space is reduced by
applying the triangular inequality to discard tree branches.

The strategies based on clustering divide the space in areas, where each area
has a center point. Information is stored in each area so that it allows easy
discarding of the whole area by just comparing the query with the center point.
The strategies based on clustering are better suited than pivots ones for high-
dimensional metric spaces.

Voronoi Diagrams: Consider a set of point {c1, c2, . . . , cn}(centers). A Voronoi
Diagram is defined as the subdivision of the plane in n areas, one for each
ci, such that q is in the area ci if and only if the euclidean distance holds
d(q, ci) < d(q, cj) for each cj , with j 	= i.

The EGNAT is based on the concepts of Voronoi Diagrams and is an exten-
sion of the GNAT proposed in [Bri95], which in turn is a generalization of the
Generalized Hyperplane Tree (GHT) [Uhl91]. Basically the tree is constructed
by taking two selected points (the two children of the root) and distributing the
remaining points according with how close in distance they are to one of the two
points. This is repeated recursively in each sub-tree.

In the GNAT k points, instead of two, are selected to divide the space
{p1, p2, . . . , pk}, where every remaining point is assigned to the closet one among
the k points.

Most data structures and algorithms for searching in metric-space databases
were not defined to be dynamic ones [CNBYM01]. However, some of them al-
low insertion operations in an efficient manner once the whole tree has been
constructed from an initial set of points (objects). Deletion operations, how-
ever, are particularly complicated because in this strategies the invariant that
supports the data structure can be easily broken with a sufficient number of
deletions, which makes it necessary to re-construct from scratch the whole tree
from the remaining points. Experimental results about these issues can be found
in [NR02].

When we consider the use of secondary memory we find in the literature a few
strategies which are able to cope efficiently with this requirement. Among the

An Index Data Structure for Searching in Metric Space Databases 3

well-know strategies are the M-Tree [CPZ97] which has a similar performance
to the GNAT in terms of number of accesses to disk and overall size of the data
structure.

2 Evolutionary Geometric Near-neighbor Access Tree

The construction of the initial EGNAT is performed using the GNAT method
proposed by [Bri95], that is

1. Select k points called centers, p1, . . . , pk.
2. Associate every remaining point with the nearest center. The set of points

associated with every center pi is denoted by Dpi .
3. For each pair of centers (pi, pj), the following range is calculated,

range
(
pi, Dpj

)
=

[
min{d (

pi, Dpj

)}, max{d (
pi, Dpj

)}] .

4. The tree is constructed recursively for each element in Dpi .

Every set Dpi represents a sub-tree whose root is pi.
Additionally, the EGNAT [Uri05] is data structure in which the nodes are

created as buckets in which the only information is the distance to their father.
This allows a significant reduction in space used in disk and also allows good
performance in terms of number of distance evaluations. When a node becomes
full of objects it evolves from a bucket to a GNAT node by re-inserting all objects
in the bucket to the new GNAT sub-tree node.

Searching in the EGNAT is performed recursively as follows,

1. Assume that we are interested in retrieving all objects with distance d ≤ r to
the query object q (range query). Let P be the set of centers of the current
node in the search tree.

2. Choose randomly a point p in P , calculate the distance d(q, p). If d(q, p) ≤ r,
add p to the output set result.

3. ∀x ∈ P , if [d(q, p) − r, d(q, p) + r] ∩ range(p, Dx) is empty, the remove x
from P .

4. Repeat steps 2 and 3 until processing all points (objects) in P .
5. For all points pi ∈ P , repeat recursively the search in Dpi .

3 EGNAT performance sequentially and in parallel

In figure 1 we show results comparing the EGNAT with the M-Tree for both
number of distance calculations and access to secondary memory. These results
show that EGNAT is more efficient than the M-Tree.

We also tested the suitability of the EGNAT data structure for supporting
query processing in parallel. We evenly distributed the database among P pro-
cessors of a 10-processors cluster of PCs. Queries are processed in batches as we

4 Roberto Uribe, Gonzalo Navarro, Ricardo J. Barrientos, and Mauricio Maŕın

 20000

 30000

 40000

 50000

 60000

1 2 3 4

D
is

ta
nc

e
E

va
lu

at
io

ns

Search Range

gnat (20)
mtree 0.4
mtree 0.1

egnat (20)

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4

R
ea

ds
/S

ee
ks

Search Range

gnat (20)
mtree 0.4
mtree 0.1

egnat (20)

(a) Average cost for search, Spanish Dictionary (b) Secondary memory, Spanish Dictionary

 20000

 30000

 40000

 50000

 60000

 70000

0.01 0.1 1

D
is

ta
nc

e
E

va
lu

at
io

ns

Percentage retrieved from the database

gnat (19)
mtree 0.4
mtree 0.1

egnat (19)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0.01 0.1 1

R
ea

d/
S

ee
ks

Percentage retrieved from the database

gnat (19)
mtree 0.4
mtree 0.1

egnat (19)

(c) Average cost for search, Gauss vectors (d) Secondary memory, Gauss vectors

Fig. 1. Results for the local index approach.

assume an environment in which a high traffic of queries is arriving to a broker
machine. The broker routes the queries to the processors in a circular manner.
We takes batches as we use the BSP model of computing for performing the
parallel computations [Val90].

In the bulk-synchronous parallel (BSP) model of computing [Val90], any par-
allel computer (e.g., PC cluster, shared or distributed memory multiprocessors)
is seen as composed of a set of P processor-local-memory components which
communicate with each other through messages. The computation is organized
as a sequence of supersteps. During a superstep, the processors may only perform
sequential computations on local data and/or send messages to other processors.
The messages are available for processing at their destinations by the next su-
perstep, and each superstep is ended with the barrier synchronization of the
processors.

We used two approaches to the parallel processing of batches of queries. In the
first case, an independent EGNAT is constructed in the piece of database stored
in each processors. Queries in this case start at any processor at the beginning

An Index Data Structure for Searching in Metric Space Databases 5

of each superstep. The first step in processing a particular query is to send a
copy of it to all processors including itself. At the next superstep the searching
algorithms is performed in the respective EGNAT and all solutions found are
reported to the processor that originated the query. We call this strategy the
local index approach.

In the second case, we assume that a single EGNAT has been constructed
considering the whole database. The first levels of the tree are kept duplicated
in every processor. The size of this tree is large enough to fit in main memory.
Downwards the tree branches or sub-trees are evenly distributed onto secondary
memory of the processors. A query stars at any processor and the sequential
algorithms is used for the first levels of the tree. The copies of the query “travel”
to other processors to continue the search in the sub-trees stored in remote
secondary memory. Note that queries can divided in multiple copies according
to the tree paths that contains valid results. Thus these copies are processed in
parallel when are sent to different processors. We call this strategy the global
index approach.

Results for databases formed by natural language text, a large set of points
formed with Gaussian distribution and a collection of images are shown in the
figure 2. A total of 10,000 queries are processed. The results show that the local
index approach achieves good efficiency in parallel. In particular, because of
disk access, we observed super-linear speedups. The results for the global index
approach were very similar.

4 Conclusions

We have described the EGANT data structure and shown its performance both
sequentially and in parallel.

The results show that this data structure is a good choice for systems large
enough that tree nodes has to be stored in secondary memory. It also allows
insert and delete operations to take place once the tree has been constructed.

For the sequential case the results with different databases show that EG-
NAT is more efficient than the well-known M-Tree both in number of distance
evaluations required to solve range queries and amount of accesses to secondary
memory.

For the parallel setting, the results show that the EGNAT admits an efficient
parallelization. The results for running time show that it is feasible to signifi-
cantly reduce the running time by the inclusion of more processors. This because
of distance calculations takes in parallel during solutions of batches of queries.
We emphasize that for use of parallel computing to be justified we must put
ourselves in a situation of a very high traffic of user queries. The results show
that in practice just with a few queries per unit time it is possible to achieve
good performance. That is, the combined effects of good load balance in both
distance evaluations and accesses to secondary memory across the processors,
are quickly enough to achieve good performance.

6 Roberto Uribe, Gonzalo Navarro, Ricardo J. Barrientos, and Mauricio Maŕın

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10

D
E

 s
eq

ue
nt

ia
l/D

E
 p

ar
al

le
l

Number of Processors

BD - gauss vectors
BD - images

BD - Spanish dictionary

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6 7 8 9 10

T
im

e
se

qu
en

tia
l/T

im
e

pa
ra

lle
l

Number of Processors

BD - Gauss vectors
BD - images

BD - Spanish dictionary

(a) Distance calculations, 1 new query/superstep (b) Running time 1 new query/superstep

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10

D
E

 s
eq

ue
nt

ia
l/D

E
 p

ar
al

le
l

Number of Processors

BD - Gauss vectors
BD - images

BD - spanish dictionary

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 3 4 5 6 7 8 9 10
T

im
e

se
qu

en
tia

l/T
im

e
pa

ra
lle

l
Number of Processors

BD - Gauss vectors
BD - images

BD - Spanish dictionary

(c) Distance calculations, 10 new queries/superstep (d) Running time, 10 new queries/superstep

Fig. 2. Results for the local index approach.

References

[BK73] W. Burkhard and R. Keller. Some approaches to best-match file search-
ing. Communication of ACM, 16(4):230–236, 1973.

[Bri95] Sergei Brin. Near neighbor search in large metric spaces. In the 21st
VLDB Conference, pages 574–584. Morgan Kaufmann Publishers, 1995.

[BYCMW94] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity match-
ing using fixedqueries trees. In 5th Combinatorial Pattern Matching
(CPM’94), LNCS 807, pages 198–212, 1994.

[CNBYM01] Edgar Chvez, Gonzalo Navarro, Ricardo Baeza-Yates, and Jos L. Mar-
roqun. Searching in metric spaces. In ACM Computing Surveys, pages
33(3):273–321, September 2001.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree : An efficient access method
for similarity search in metric spaces. In the 23st International Conference
on VLDB, pages 426–435, 1997.

[Nav02] Gonzalo Navarro. Searching in metric spaces by spatial approximation.
The Very Large Databases Journal (VLDBJ), 11(1):28–46, 2002.

An Index Data Structure for Searching in Metric Space Databases 7

[NR02] Gonzalo Navarro and Nora Reyes. Fully dynamic spatial approximation
trees. In the 9th International Symposium on String Processing and In-
formation Retrieval (SPIRE 2002), pages 254–270, Springer 2002.

[TTSF00] Caetano Traina, Agma Traina, Bernhard Seeger, and Christos Faloutsos.
Slim-trees: High performance metric trees minimizing overlap between
nodes. In VII International Conference on Extending Database Technol-
ogy, pages 51–61, 2000.

[Uhl91] J. Uhlmann. Satisfying general proximity/similarity queries with metric
trees. In Information Processing Letters, pages 40:175–179, 1991.

[Uri05] R. Uribe. A space-metric data structure for secondary memory. Mas-
ter’s thesis, Computer Science Department, University of Chile, Santiago,
Chile, Abril 2005.

[Val90] L.G. Valiant. A bridging model for parallel computation. Comm. ACM,
33:103–111, Aug. 1990.

[Yia93] P. Yianilos. Data structures and algoritms for nearest neighbor search
in general metric spaces. In 4th ACM-SIAM Symposium on Discrete
Algorithms (SODA’93), pages 311–321, 1993.

